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a b s t r a c t 

Brain–Computer Interface (BCI) systems analyze brain signals to generate control commands for computer 

applications or external devices. Utilized as alternative communication channel, BCIs have the potential to 

assist people with severe motor disabilities to interact with their environment and to participate in daily 

life activities. Handicapped people from all age groups could benefit from such BCI technologies. Although 

some papers have previously reported slightly worse BCI performance by older subjects, in many studies 

BCI systems were tested with young subjects only. 

In the presented paper age-associated differences in BCI performance were investigated. We compared 

accuracy and speed of a steady-state visual evoked potential (SSVEP)-based BCI spelling application con- 

trolled by participants of two different equally sized age groups. Twenty subjects (eleven female and nine 

male) participated in this study; each age group consisted of ten subjects, ranging from 19 to 27 years 

and from 64 to 76 years. Our results confirm that elderly people may have a deteriorated information 

transfer rate (ITR). The mean (SD) ITR of the young age group was 27.36 (6.50) bit/min while the el- 

derly people achieved a significantly lower ITR of 16.10 (5.90) bit/min. The average time window length 

associated with the signal classification was usually larger for the participants of advanced age. These 

findings show that the subject age must be taken into account during the development of SSVEP-based 

applications. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

A Brain–Computer Interface (BCI) is a technical system that ac-

uires and analyzes brain activity patterns in real time to trans-

ate them into control commands for computers or external de-

ices [1,2] . BCIs have received much attention in recent years and

here has been consistent growth in the number of papers men-

ioning the term BCI since 2001 [3] . There are many different

ontrol paradigms for BCIs, e.g. the event-related desynchroniza-

ion/synchronization (ERD/ERS)-paradigm [4] , and the P300 event-

elated potential (ERP)-paradigm [5,6] . In the presented paper we

se so-called steady-state visual evoked potential (SSVEP)-based

CIs, which represent another standard BCI paradigm (see e.g. [7] ).

teady-state visual evoked potentials are the continuous brain re-

ponses elicited at the occipital and parietal cortical areas under

isual stimulation (e.g. flickering box on a computer monitor) with

 specific constant frequency. 

When focusing at a target of a set consisting of several con-

tantly flickering visual stimuli, normal brain signals are modulated
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ith the corresponding frequency. These are then non-invasively

ecorded by an electroencephalogram (EEG) and identified in real

ime. BCI applications can assist people paralyzed by disorders

uch as cerebral palsy, spinal cord injury, brain stem stroke, amy-

trophic lateral sclerosis (ALS), or muscular dystrophies to partici-

ate in daily life activities [8] . 

Those disorders can be found among all age groups. Also, the

ffects of aging alone present physical limitations that all-too-often

revent older people from interacting with their environment. Al-

hough the specific needs of all different age groups should be con-

idered during BCI development, the majority of BCI systems were

ested with younger subjects. However, increasing effort has been

ade to conduct studies with the target population. Several BCI

ystems have been tested in lifelike scenarios [9–11] . 

Some papers have previously reported slightly worse BCI per-

ormance by subjects of advanced age. E.g., in a 12 participant

tudy about latency and distribution of P300, Dias et al. found

hat elderly subjects ( > 51 years) show smaller P300 amplitudes

han younger ones [12] . Grosse-Wentrup and Schölkopf reviewed

erformance variations in BCIs based on the sensorimotor-rhythm

SMR) and stated that a negative correlation between age and BCI

erformance is conceivable [13] . Furthermore, Macpherson et al.

nvestigated age-associated changes in SSVEP amplitude and la-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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tency with memory performance [14] . They found that older adults

demonstrated reduced neural activity during lower task demands,

whereas with greater task demands, their neural activity was in-

creased. Research on accuracy in SSVEP-based BCIs frequently re-

ported variations in performance between users. Ehlers et al. re-

ported age group distinctions concerning accuracy rates of a per-

formance with a SSVEP-based spelling application [15] , but only

children and young adults between 6 and 33 where tested in this

study. The young adults obtained higher accuracy rates compared

to children. Hsu et al. studied the amplitude-frequency character-

istics of frontal and occipital SSVEPs in young, elderly and ALS pa-

tients [16] . They found that the amplitudes of occipital SSVEPs in

the young group (mean age 24.25 years) were significantly larger

than the amplitudes of the elderly group (mean age 54.13 years).

Research papers on so-called BCI demographics in SSVEP BCIs also

reported age-related performance differences. Allison et al. ana-

lyzed the spelling performance with a SSVEP-based spelling appli-

cation. It was observed that younger subjects were less annoyed

by the flickering and tended to attain a higher information transfer

rate (ITR) [17] . However, in this relatively large study only few sub-

jects were over 50 years old. In another subsequent demographics

study, subjects between 18 and 55 years were tested, but neither

a statistically significant effect of age, gender, nor their interaction

were observed [18] . 

In order to explore the age-related BCI performance differences

further, we tested two equally sized groups of different age ranges

with a SSVEP-spelling application. The use of BCI as a spelling in-

terface has been one of the main focuses in BCI studies. A strong

correlation between BCI accuracy and the length of the time win-

dow dedicated to the SSVEP classification during EEG analysis has

been observed [19,20] . Generally speaking, a short time window

results in classification errors, and a long time window slows down

the BCI performance. In many practical experiments with subjects

it was found that some users (especially elderly subjects) need to

gaze at the stimulation target for a relatively long period of time,

hence a long time window seems to be necessary to achieve con-

trol of the BCI system [18] . 

High classification accuracies are an essential goal in BCI re-

search. A key factor in ensuring effective control is the arrange-

ment and number of the visual stimuli. Especially for elderly peo-

ple, the readability and simplicity of the graphical user interface

(GUI) are crucial. Moreover, the amount of subjects that are able

to gain control over a SSVEP-based BCI as well as the performance

accuracies are comparably larger if only four simultaneously dis-

played stimuli are used [18,21] . Because of this, we used a rather

small number of simultaneously displayed targets. As opposed to

five classes as in [15,17,22] , only four simultaneously flickering

boxes containing all letters of the English alphabet were used. 

In the presented study age related performance differences in

SSVEP-based BCIs are analyzed and discussed. Through limiting the

number of simultaneously displayed targets and extending classi-

fication time windows, we aim to close the performance gap be-

tween older and younger test subjects. 

2. Methods and materials 

2.1. Participants 

Two groups of ten healthy volunteer subjects each participated

in the study. The group of younger subjects ( groupA ) had a mean

(SD) age of 22.4 (2.92) years, ranging from 19 to 27. All subjects

from this group were students or employees of the Rhine-Waal

University of Applied Sciences and had no previous experience

with BCI systems. Four subjects of this group were female. The

other group ( groupB ) consisted of three male and seven female vol-

unteer subjects, with a mean (SD) age of 67.3 (5.66) years, ranging
rom 54 to 76. None of the twenty subjects had ever used a BCI.

ll subjects had normal or corrected-to-normal vision. Spectacles

ere worn if needed. 

All participants gave written informed consent in accordance

ith the Declaration of Helsinki before taking part in the exper-

ment. Information needed for the analysis of the test was stored

nonymously during the experiment. The entire session lasted on

verage approximately 60 minutes for each subject. Subjects had

he opportunity to withdraw from participation at any time. 

The EEG recordings were conducted in a typical laboratory set-

ing with low background noise and luminance. All persons who

olunteered to participate in the study became research subjects

fter reading a subject information sheet and signing a consent

orm. The subjects did not receive any financial reward for their

articipation. 

.2. Signal acquisition 

Subjects were seated in front of a LCD screen (BenQ XL2420T,

esolution: 1920 × 1080 pixels, vertical refresh rate: 120 Hz) at

 distance of about 60 cm. The used computer system operated

n Microsoft Windows 7 Enterprise running on an Intel processor

Intel Core i7, 3.40 GHz). Standard Ag/AgCl electrodes were used

o acquire the signals from the surface of the scalp. The ground

lectrode was placed over AF Z , the reference electrode over C Z ,

nd the eight signal electrodes were placed at predefined loca-

ions on the EEG-cap marked with P Z , PO 3 , PO 4 , O 1 , O 2 , O Z , O 9 and

 10 in accordance with the international system of EEG electrode

lacement. Standard abrasive electrolytic electrode gel was applied

etween the electrodes and the scalp to bring impedances below

 k �. An EEG amplifier, g.USBamp (Guger Technologies, Graz, Aus-

ria), was utilized. The sampling frequency was set to 128 Hz. Dur-

ng the EEG signal acquisition, an analogue band pass filter (be-

ween 2 and 30 Hz) and a notch filter (around 50 Hz) were applied

irectly in the amplifier. 

.3. Signal processing 

For SSVEP signal classification we used a minimum energy com-

ination method (MEC) introduced in [23] , as modified in [24] . 

The SSVEP response for a flickering frequency of f Hz, the volt-

ge between the i th electrode and reference electrode at time t

an be described as a sum of sine and cosine functions of the fre-

uency f and its harmonics k , with corresponding amplitudes a i, k 
nd b i, k : 

 i (t) = 

N h ∑ 

k =1 

a i,k sin (2 πk f t) + b i,k cos (2 πk f t) + E i,t (1)

he term E i, t represents the noise component of the electrode

 , describing various artifacts that cannot attribute to the SSVEP

esponse. For a time segment length of T s , acquired with sam-

ling frequency of F E Hz, containing N t samples of the i th signal,

he model can be described in vector form as y i = Xτi + E i where

 i = [ y i (1) , . . . , y i (N t )] T is a N t × 1 vector and X is the SSVEP model

atrix of size N t × 2 N h containing the sine and cosine compo-

ents. Further, the vector τ i contains the corresponding amplitudes

 i, k and b i, k . 

To cancel out the nuisance and noise, a channel vector s of

ength N t is defined as linear combination of the electrode sig-

als: s = 

∑ N y 
i =1 

w i y i = Y w, where w is a vector of weights associ-

ted with the electrode signals. Introducing a set of N s channels

 = [ s 1 , . . . , s N s ] the equation above can be generalized to S = XW,

here W = [ w 1 , . . . , w N s ] is the corresponding weight matrix. 
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Fig. 1. Changes in the time window after a performed classification in case no distinct classification can be made and the actual time t allows the extension to the next 

pre-defined value. After each performed classification (green), additional time for gaze shifting was included (red) and the classifier output was rejected for 9 blocks. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

a

Y

T  

t

m

i  

e  

λ  

t  

t

W

T  

c  

fi

 

o

P

T  

i  

f

w

 

m

Table 1 

Overview of the used time segment lengths. Eleven seg- 

ment lengths, T s , between 812.5 ms and 16,250 ms were 

used. 

Segment- Time Blocks of EEG data 

length [ms] (one block = 13 samples) 

T 1 812 .5 8 blocks 

T 2 1015 .625 10 blocks 

T 3 1523 .4375 15 blocks 

T 4 2031 .25 20 blocks 

T 5 3046 .875 30 blocks 

T 6 4062 .50 40 blocks 

T 7 5078 .125 50 blocks 

T 8 6093 .75 60 blocks 

T 9 7109 .375 70 blocks 

T 10 8125 .00 80 blocks 

T 11 16250 .00 160 blocks 
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First, an orthognonal projection is used to remove any SSVEP

ctivity from the recorded signal, 

˜ 
 = Y − X (X 

T X ) −1 X 

T Y. 

hen a weights vector ˆ w that minimizes remaining signal ˜ Y needs

o be found: the solution of the optimization problem 

in 

ˆ w 

‖ 

˜ Y ˆ w ‖ 

2 = min 

ˆ w 

ˆ w 

T ˜ Y T ˜ Y ˆ w (2) 

s the smallest eigenvector v 1 of the symmetric matrix ˜ Y 

T ˜ Y and the

nergy of the resulting combination equals the smallest eigenvalue

1 from this matrix. Additional channels can be added by choosing

he next smallest eigenvalues and corresponding eigenvectors and

he weight matrix can be set to 

 = 

[ 

v 1 √ 

λ1 

, . . . , 
v N s √ 

λN s 

] 

. 

o discard up to 90 % of the nuisance signal the total number of

hannels is selected by finding the smallest value for N s that satis-

es the equation: ∑ N s 
i =1 

λi ∑ N y 
j=1 

λ j 

> 0 . 1 . (3) 

To detect the SSVEP response for a specific frequency, the power

f that frequency and its harmonics N h is estimated by 

ˆ 
 = 

1 

N s N h 

N s ∑ 

l=1 

N h ∑ 

k =1 

‖ X 

T 
k s l ‖ 

2 
. (4) 

o avoid overlapping of frequencies, we use N h = 2 in the system

mplementation. The SSVEP power estimations for all N f considered

requencies were normalized into probabilities, 

p i = 

̂ P i ∑ N f 
j=1 

ˆ P j 
with 

N f ∑ 

i =1 

p i = 1 , 

here ˆ P i is the i th power estimation, 1 ≤ i ≤ N f . 

In order to increase the difference between probabilities, a Soft-

ax function was applied: 

p ′ i = 

e αp i ∑ j= N f 
j=1 

e αp j 
with 

i = N f ∑ 

i =1 

p ′ i = 1 , (5) 
ith α = 0 . 25 . In order to increase robustness, three additional fre-

uencies (means between pairs of target frequencies) were consid-

red additional to the four target stimuli [19] , hence N f = 7 . The

lassifier output O was then defined for 1 ≤ i ≤ N f as 

 = 

{
argmax i (p ′ 

i 
) , p ′ 

i 
≥ βi , i ≤ 4 

0 else . 

f no frequency probability exceeded the corresponding classifica-

ion threshold β i or if one of the additional frequencies ( i > 4)

ad highest probability, the classification was rejected. For each

timulation frequency the experimenters determined classification

hreshold β i individually during a familiarization run (see details

n Section 2.5 ). After each classification the classifier output was

ejected for the duration of 914 ms (9 blocks). During this gaze

hifting period the targets did not flicker. The recorded EEG-data

ere processed in blocks of 13 samples (101.5625 ms with the

ampling rate of 128 Hz). 

The SSVEP classification was performed with the adaptive slid-

ng window of T s [24] . If no classification could be made and the

ctual time t allowed the extension of T s to the next predefined

alue, this new value was used instead (see Fig. 1 ). Recently we

odified the adaptive method further. In order to make the system

ore robust we increased the number of predefined time segment

engths to eleven (as displayed in Table 1 ). 
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Time: 208710ms

Stop

ZWEI BOXKAEMPFER JAGEN EVA QUER DURCH SYLT
ZWEI BOXKAEMP 

J K L
MNO
PQR

STU
VWX
Y Z _

ABC
DEF
GHI

Löschen

Time: 208710ms

Stop

ZWEI BOXKAEMPFER JAGEN EVA QUER DURCH SYLT
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STU
VWX
Y Z _

ABC
DEF
GHI

Löschen

Fig. 2. GUI of the Three-step spelling application during the online experiment. A subject was spelling the text “ZWEI BOXKAEMPFER JAGEN EVA QUER DURCH SYLT”

(a German pangram). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Overview of the stimulation frequencies representing the commands used in the 

experiment. The frequency set was determined individually for each subject. 

Subject Command 1 Command 2 Command 3 Command 4 

[#] [Hz] [Hz] [Hz] [Hz] 

groupA 1 10 .91 9.23 8 6.67 

2 10 .91 10 8 6.67 

3 7 .5 7.06 6.67 6.32 

4 10 7.06 6.67 6.32 

5 8 7.5 6.67 6.32 

6 8 .57 8 7.5 6.67 

7 7 .5 7.06 6.67 6.32 

8 7 .5 7.06 6.67 6.32 

9 7 .5 7.06 6.67 6.32 

10 6 .67 7.06 7.5 8 

groupB 11 9 .23 8 7.06 6.32 

12 9 .23 8 7.06 6.32 

13 8 7.5 7.06 6.32 

14 9 .32 8 7.06 6.32 

15 8 7.5 7.06 6.32 

16 10 7.06 6.67 6.32 

17 6 .67 7.06 7.5 9.23 

18 6 .67 7.06 7.5 9.23 

19 6 .67 7.06 7.5 8 

20 6 .67 7.06 7.5 8 
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2.4. SSVEP-based Three-step spelling application 

The Three-step spelling application resembles an earlier devel-

oped GUI [22,25,26] . In the Three-step spelling application four com-

mands were represented on the computer screen by flickering

boxes of default sizes (175 × 175 pixels). The size of the boxes var-

ied during the experiment as described in [24] . The subject faced

four boxes and in order to increase user friendliness, the user com-

mands were displayed in the subjects mother tongue (German).

Three boxes were arranged horizontally in the upper part of the

screen containing the letters “A-I”, “J-R” and “S-_”, respectively. The

additional 4th box, containing the command “Löschen” (delete the

last spelled character) was located on the right side of the screen.

The box for the written word and the word to spell was placed in

the center of the screen. The content of the three boxes containing

the alphabet changed to more specific sets according to the first

selection made. The boxes would then display “A B C”, “D E F”, “G

H I” or “J K L”, “M N O”, “P Q R” or “S T U”, “V W X”, “Y Z _”. After

selection in this second window, the content of the boxes changed

once more, and each box contained a single letter. In both the sec-

ond and the third window, the far right box (“Löschen” in window

1) would contain the command “Zurück” (back), giving the user

the option to switch to the previous window. At least three steps

were necessary to choose any single letter. If the subject made a

mistake, and corrected it with the command “Zurück” (back), the

number of steps would increase. A screenshot of the first window

taken during the online spelling task is shown in Fig. 2 . In order to

reduce the information load of the visual channel, every command

classification was followed by an audio feedback with the name of

the selected command or the letter spelled (also in German). 

2.5. Experimental setup 

After signing the consent form, each subject completed a brief

pre-questionnaire, answering questions regarding gender, age and

BCI experience. Afterwards the subjects were prepared for the EEG

recording. Subjects participated in a familiarization run spelling

the word “KLEVE”, and a word of free choice (e.g. the own first

name). Next, each subject used the GUI to spell the German

pangram “ZWEI BOXKAEMPFER JAGEN EVA QUER DURCH SYLT”.

Stimulation frequencies and other SSVEP key parameters that

were used in this experiment were determined individually on the

basis of the refresh rate of the LCD screen (120 Hz) during the

familiarization run. If repeated false classifications occurred during

this test run, the experimenters manually adjusted the classifi-
ation thresholds, or chose different frequencies. If the subjects

ad difficulties to select one of the buttons, the corresponding

hreshold β i was lowered, or another frequency was used instead.

ubjects spelled the word “KLEVE” with a predefined frequency

et with frequencies between 6.67 Hz and 12.00 Hz. The frequency

ets used for the pangram for each subject are provided in Table 2 .

ach spelling phase ended automatically when the presented

ord was spelled correctly. Spelling errors were corrected via the

mplemented delete button (“Löschen”). After the spelling phase

he subjects completed a post-questionnaire, answering additional

uestions. 

. Results 

BCI performance for each subject was evaluated by calculating

he commonly used ITR in bit/min, employing the formula as dis-

ussed e.g. in [1] 

 = log 2 N + P log 2 P + (1 − P ) log 2 

[ 
1 − P 

N − 1 

] 
, 

here, B represents the number of bits per trial. The Accuracy P

as calculated as the ratio between the number of correct and to-
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Table 3 

Results of spelling the task “ZWEI BOXKAEMPFER JAGEN EVA QUER DURCH SYLT”

for groupA . All subjects were able to complete the task. C N refers to the total num- 

ber of commands, which is further divided into the number of correct and false 

commands, C correct and C false , respectively. Min, Max, Mean and SD values are given 

at the bottom of the table. 

Subject Time Acc. ITR Commands Time/ C correct 

[s] [%] [bpm] C N C correct C false [s] 

1 402.49 99 .22 36 .66 128 127 1 3.169 

2 633.24 95 .21 22 .75 146 139 7 4.556 

3 885.93 97 .76 16 .41 134 131 3 6.763 

4 491.97 100 .00 30 .73 126 126 0 3.905 

5 449.72 100 .00 33 .62 126 126 0 3.569 

6 500.09 99 .22 29 .50 128 127 1 3.938 

7 860.74 95 .77 16 .62 142 136 6 6.329 

8 577.99 100 .00 26 .16 126 126 0 4.587 

9 466.27 98 .48 31 .62 132 130 2 3.587 

10 499.79 99 .22 29 .52 128 127 1 3.935 

Mean 576.82 98 .49 27 .36 131.60 129.50 2.10 4.434 

SD 160.35 1 .65 6 .50 6.74 4.36 2.39 1.135 

Max 885.93 100 .00 36 .66 146 139 7 6.763 

Min 402.49 95 .21 16 .41 126 126 0 3.169 

Table 4 

Results of spelling the task “ZWEI BOXKAEMPFER JAGEN EVA QUER DURCH SYLT”

for groupB . All subjects were able to complete the task. C N refers to the total num- 

ber of commands, which is further divided into the number of correct and false 

commands, C correct and C false , respectively. Min, Max, Mean and SD values are given 

at the bottom of the table. 

Subject Time Acc. ITR Commands Time/ C correct 

[s] [%] [bpm] C N C correct C false [s] 

11 1841 .23 79 .65 6 .90 226 180 46 10 .229 

12 1097 .84 90 .38 11 .84 156 141 15 7 .786 

13 963 .82 84 .94 11 .85 166 141 25 6 .836 

14 815 .14 92 .96 15 .87 142 132 10 6 .175 

15 548 .54 97 .69 25 .65 130 127 3 4 .319 

16 1287 .30 87 .26 12 .31 212 185 27 6 .958 

17 702 .31 96 .27 19 .57 134 129 5 5 .4 4 4 

18 737 .65 94 .37 18 .43 142 134 8 5 .505 

19 1024 .16 91 .45 12 .83 152 139 13 7 .368 

20 541 .836 96 .32 25 .79 136 131 5 4 .136 

Mean 955 .98 91 .13 16 .10 159.60 143.90 15.70 6 .476 

SD 372 .51 5 .44 5 .90 31.58 19.87 12.74 1 .708 

Max 1841 .23 97 .69 25 .79 226 185 46 10 .229 

Min 541 .84 79 .65 6 .90 130 127 3 4 .136 
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al number of classified commands. In the GUI presented here, the

verall number of possible choices was N = 4 . 

The overall BCI performance is given in Tables 3 and 4 . All sub-

ects were able to complete the spelling task. The overall distribu-

ion of time windows for all correct classifications is displayed in

ig. 3 . 

Fig. 4 provides the changes in signal power five seconds prior

o a performed command classification. Provided are the averaged

ignals for stimulation frequencies used by subjects from each of

he two age groups. Questionnaire results are given in Tables 5 and

 . 

. Discussion 

All subjects achieved reliable control over the BCI system,

eaching accuracies above 85%. It can be seen in Tables 3 and

 that there is a substantial difference between the performance

f younger subjects and subjects of advanced age. Subjects from

roupA reached a mean accuracy of 98.49%. Three subjects from

his group completed the spelling task even without errors, achiev-

ng an accuracy of 100%. The mean accuracy of groupB was 91.13%

nd no subject of this group reached 100% accuracy. A tudent’s -

est (with unpooled variance) revealed a significant difference be-
ween the mean ITR of young and elderly subjects, t(11) = 3 . 88 , p

 0.05. 

Also the time needed to complete the spelling task was notice-

bly larger for subjects from groupB . The mean ITR of groupA was

7.36 bit/min while subjects from groupB achieved a significantly

ower ITR of only 16.19 bit/min ( t(18) = 3 . 85 , p < 0 . 05 ). 

In the presented study the classification time window for sub-

ects from groupB was usually larger (see Fig. 3 ). The graphs of the

ounger subjects are noticeably steeper in the last second prior to

he command classification. The relevance of the choice of appro-

riate time segment lengths has been intensively discussed already

n 2010 [19] . In a performance comparison on 8 different time seg-

ent lengths over 10 subjects the authors analyzed the distribu-

ion of the time segment length for all correct classifications and

eported an average time segment length of 2.8 s for obtaining a

SVEP response recognition of 95%. The presented study confirms,

hat the implementation of larger time segments is beneficial for

ome users. Subjects from groupB needed to gaze at a stimula-

ion frequency for relatively long time (see also Fig. 4 ). As dis-

layed in Tables 3 and 4 subjects from groupB needed on average

.476 s for a correct command classification; subjects from groupA

eeded on average 4.434 s which is significantly less according to

 -test with unpooled variance ( t(16) = 2 . 98 , p < 0 . 05 ). A reason

or the performance difference could be smaller SSVEP amplitudes

f elderly people, similar to results of Hsu et al. [16] . They found

hat for stimulation frequencies 13, 15 and 17 Hz the young group

eached SSVEP amplitudes of 2.82, 3.23 and 3.48 μV respectively.

n comparison the elderly group reached amplitudes of 1.21, 1.28

nd 1.67 μV for SSVEPs induced by the same frequencies. Regard-

ng the amplitude of frontal SSVEPs, no significant difference was

ound among the groups. Meanwhile, in order to address perfor-

ance difference between subjects and to maximize the classifi-

ation accuracies, we developed a wizard that determines minimal

ime window length and classification thresholds individually for

ach user [27] ; however, in the presented , the typical SSVEP pa-

ameters were determined manually by the experimenters. 

Though the amplitudes of frontal SSVEPs might be generally

maller, they could be an alternative choice to design SSVEP-based

CIs especially for elderly people, as age related performance dif-

erences could be smaller with SSVEPs measured from frontal re-

ion. Other explanations for poorer performance might be that

ounger subjects had shorter reaction time and also faster learn-

ng ability compared to the subjects of advanced age. 

It should also be noted that the performance gap could be

ven larger if a higher number of stimulation targets would be

isplayed, as the elderly people might have more problems with

n increased information load of the visual channel. Minimizing

he number of simultaneously displayed targets offers more free-

om in stimulus size, distance between stimuli and also reduces

he load on the visual channel so that less control of the users

aze direction is required. The drawback of a low stimulus num-

er is relatively low ITR. Generally higher ITRs than in the pre-

ented study can be achieved with other BCI paradigms. Spüler

t al. reported an average ITR of 144 bit/min and an accuracy of

6% using code-modulated visual evoked potentials (c-VEPs) and

he detection of error-related potentials [28] . Visual stimulation

ith pseudo-random bit-sequences evokes specific Broad-Band Vi-

ually Evoked Potentials (BBVEPs) that can also be reliably used in

CI for high-speed communication in spelling applications [29] . 

An important issue regarding user comfort in SSVEP-based BCIs

s frequency selection. All subjects participated in this study were

sked about discomfort caused by flickering. 45% of the subjects

tated that they found the flickering annoying; four of the elderly

ubjects even reported a slighly increased level of tiredness after

he experiment (see Tables 5 and 6 ). 
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Table 5 

Results from the pre-questionnaires. The numbers are represented as number of respondents or in form: mean value 

(SD), range. The level of tiredness was rated on a scale from 1 to 5: (1) not tired, (2) little tired, (3) moderately tired, 

(4) tired, (5) very tired. 

Age Gender Vision correction Level of tiredness Length of sleep 

Years M F Yes No (1) (2) (3) (4) (5) Hours 

groupA 22.4 (2.92), 17–27 6 4 3 7 2 2 6 0 0 6.25 (0.86), 5–7 

groupB 67.3 (3.83), 64–76 3 7 10 0 3 4 2 1 0 5.61 (1.20), 3.5-7 

Table 6 

Results from the post-questionnaires as number of respondents. The 

level of tiredness was rated on a scale from 1 to 5: (1) not tired, (2) 

little tired, (3) moderately tired, (4) tired, (5) very tired. 

Level of tiredness Flickering annoying 

(1) (2) (3) (4) (5) Yes No 

groupA 2 2 6 0 0 5 5 

groupB 2 1 6 1 0 4 6 
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It is known that high-frequencies produce less visual fa-

tigue than lower frequencies and show no stimulus-related

seizures [30,31] . These crucial advantages might be even more

important for elderly users. Detecting SSVEPs with high frequen-

cies, however, is more challenging than detecting SSVEPs in the

lower bands, as SSVEP amplitudes significantly decrease for high-

frequency stimulation beyond 30 Hz [18] . Also the temporal sta-

bility of higher frequency components might require recalibration

for each session [32] . Nevertheless, the performance drop due to

higher stimulation frequencies might be weaker for elderly sub-

jects. Further tests are necessary. Future work should address the

performance gap caused by advanced age in more detail. GUIs

could be modified to suit the needs of older users. 

5. Conclusion 

In this study, we investigated age associated SSVEP BCI perfor-

mance differences by comparing results of a BCI spelling perfor-

mance from two age groups. Experimental results based on twenty

healthy subjects demonstrated that thanks to the implementation

of large classification time windows (up to 16 s), every subject

gained control over the system with decent accuracies. However,

commands were classified faster and more accurate for subjects of

the young group. The significant performance difference (mean ITR

of 27.36 bit/min compared to 16.19 bit/min for the young and el-

derly age group, respectively) needs to be considered already dur-
ng the design phase of BCI systems. The results confirm that sub-

ect age influence BCI performance, and indicate that GUIs should

e modified to fit the needs of elderly users. 

cknowledgment 

This research was supported by the German Federal Ministry

f Education and Research (BMBF) under Grants 16SV6364 and

1DR14014 , and the European Fund for Regional Development

EFRE) under Grant GE-1-1-047 . We thank all the participants of

his research study as well as our student assistants Catharina

homa and Julia Falkenstein. 

eferences 

[1] J. Wolpaw , N. Birbaumer , D. McFarland , G. Pfurtscheller , T. Vaughan , Brain—

computer interfaces for communication and control, Clin. Neurophysiol. 113
(2002) 767–791 . 

[2] S. Gao , Y. Wang , X. Gao , B. Hong , Visual and auditory brain–computer inter-
faces, IEEE Trans. Biomed. Eng. 61 (5) (2014) 1436–1447 . 

[3] D.E. Thompson , L.R. Quitadamo , L. Mainardi , S. Gao , P.-J. Kindermans ,

J.D. Simeral , R. Fazel-Rezai , M. Matteucci , T.H. Falk , L. Bianchi , et al. , Perfor-
mance measurement for brain–computer or brain–machine interfaces: a tuto-

rial, J. Neural Eng. 11 (3) (2014) 035001 . 
[4] B. Blankertz , C. Sannelli , S. Halder , E.M. Hammer , A. Kübler , K.-R. Müller , G. Cu-

rio , T. Dickhaus , Neurophysiological predictor of SMR-based BCI performance,
Neuroimage 51 (4) (2010) 1303–1309 . 

[5] G. Townsend , B. LaPallo , C. Boulay , D. Krusienski , G. Frye , C. Hauser ,

N. Schwartz , T. Vaughan , J. Wolpaw , E. Sellers , A novel P300-based brain—
computer interface stimulus presentation paradigm: moving beyond rows and

columns, Clin. Neurophysiol. 121 (2010) 1109–1120 . 
[6] A. Combaz , N. Chumerin , N.V. Manyakov , A. Robben , J.A. Suykens , M.M. Van

Hulle , Towards the detection of error-related potentials and its integration in
the context of a p300 speller brain–computer interface, Neurocomputing 80

(2012) 73–82 . 
[7] E.K. Kalunga , S. Chevallier , Q. Barthélemy , K. Djouani , E. Monacelli , Y. Hamam ,

Online SSVEP-based BCI using Riemannian geometry, Neurocomputing 191

(2016) 55–68 . 
[8] A . Kübler , A . Furdea , S. Halder , E.M. Hammer , F. Nijboer , B. Kotchoubey , A

brain–computer interface controlled auditory event-related potential (P300)
spelling system for locked-in patients, Ann. N. Y. Acad. Sci. 1157 (1) (2009)

90–100 . 



I. Volosyak et al. / Neurocomputing 250 (2017) 57–64 63 

−5000 −4000 −3000 −2000 −1000 0
0

20

40

60

80
Frequency 9.23 Hz

Time (ms)

P
ow

er
(%

)

−5000 −4000 −3000 −2000 −1000 0
0

20

40

60

80
Frequency 8.00 Hz

Time (ms)

P
ow

er
(%

)

−5000 −4000 −3000 −2000 −1000 0
0

20

40

60

80
Frequency 7.50 Hz

Time (ms)

P
ow

er
(%

)

−5000 −4000 −3000 −2000 −1000 0
0

20

40

60

80
Frequency 7.06 Hz

Time (ms)

P
ow

er
(%

)

−5000 −4000 −3000 −2000 −1000 0
0

20

40

60

80
Frequency 6.67 Hz

Time (ms)

P
ow

er
(%

)

−5000 −4000 −3000 −2000 −1000 0
0

20

40

60

80
Frequency 6.32 Hz

Time (ms)

P
ow

er
(%

)

groupA
groupB

groupA
groupB

groupA
groupB

groupA
groupB

groupA
groupB

groupA
groupB

Fig. 4. Changes in signal power during command classification five seconds prior to a performed command classification. Provided are the averaged signals for selected 

stimulation frequencies used by subjects from each of the two age groups. The x -axis describes the time prior to a performed correct command classification; the x -axis 

limits were chosen based on the average command classification times. The y -axis describes the changes in the averaged frequency power estimations p ′ 
i 

of the corresponding 

frequency prior to the correct classification of that frequency. The p ′ 
i 

were averaged over all subjects and all performed correct commands of the corresponding frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[9] E.W. Sellers , T.M. Vaughan , J.R. Wolpaw , A brain–computer interface for

long-term independent home use, Amyotroph. Lateral Scler. 11 (5) (2010)
449–455 . 

[10] T. Kaufmann , S.M. Schulz , A. Köblitz , G. Renner , C. Wessig , A. Kübler , Face stim-
uli effectively prevent brain–computer interface inefficiency in patients with

neurodegenerative disease, Clin. Neurophysiol. 124 (5) (2013) 893–900 . 
[11] A. Kübler , E.M. Holz , E.W. Sellers , T.M. Vaughan , Toward independent home use

of brain–computer interfaces: a decision algorithm for selection of potential

end-users, Arch. Phys. Med. Rehabil. 96 (3) (2015) S27–S32 . 
[12] N. Dias , P. Mendes , J. Correia , Subject age in P300 BCI, in: Proceedings of the

Second International IEEE Conference on Engineering in Medicine and Biology
Society (EMBC), 2005, pp. 579–582 . Neural Engineering 

[13] M. Grosse-Wentrup , B. Schölkopf , A review of performance variations in SM-
R-based brain–computer interfaces (BCIs), in: Brain–Computer Interface Re-

search, Springer, 2013, pp. 39–51 . 
[14] H. Macpherson , A. Pipingas , R. Silberstein , A steady state visually evoked po-

tential investigation of memory and ageing, Brain Cognit. 69 (2009) 571–579 . 
[15] J. Ehlers , D. Valbuena , A. Stiller , A. Gräser , Age-specific mechanisms in an

SSVEP-based BCI scenario: evidences from spontaneous rhythms and neuronal
oscillators, Comput. Intell. Neurosci. 2012 (2012) 20 . 

[16] H. Hsu , I. Lee , H. Tsai , H. Chang , K. Shyu , C. Hsu , H. Chang , T. Yeh , C. Chang ,

P. Lee , Evaluate the feasibility of using frontal SSVEP to implement an
SSVEP-based BCI in young, elderly and ALS groups, IEEE Trans. Neural Syst.

Rehabil. Eng. PP (99) (2015) 1 . 
[17] B. Allison , T. Lüth , D. Valbuena , A. Teymourian , I. Volosyak , A. Gräser , BCI De-



64 I. Volosyak et al. / Neurocomputing 250 (2017) 57–64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v  

G  

s  

o

 

 

 

 

 

 

 

 

 

 

 

 

mographics: How many (and what kinds of) people can use an SSVEP BCI?
IEEE Trans. Neural Syst. Rehabil. Eng. 18 (2) (2010) 107–116 . 

[18] I. Volosyak , D. Valbuena , T. Lüth , T. Malechka , A. Gräser , BCI Demographics II:
how many (and what kinds of) people can use an SSVEP BCI? IEEE Trans. Neu-

ral Syst. Rehabil. Eng. 19 (3) (2011) 232–239 . 
[19] I. Volosyak , H. Cecotti , A. Gräser , Steady-state visual evoked potential response

– impact of the time segment length, in: Proceedings of the Seventh Interna-
tional Conference on Biomedical Engineering (BioMed2010), Innsbruck, Austria,

February 17–19, 2010, pp. 288–292 . 

[20] J.N. da Cruz , F. Wan , C.M. Wong , T. Cao , Adaptive time-window length based on
online performance measurement in SSVEP-based BCIS, Neurocomputing 149

(2015) 93–99 . 
[21] C. Guger , B.Z. Allison , B. Growindhager , R. Prückl , C. Hintermüller , C. Kapeller ,

M. Bruckner , G. Krausz , G. Edlinger , How many people could use an SSVEP BCI?
Front. Neurosci. 6 (2012) 1–6 . 

[22] I. Volosyak , A. Moor , A. Gräser , A dictionary-driven SSVEP speller with a

modified graphical user interface, in: Advances in Computational Intelligence,
Springer, 2011, pp. 353–361 . 

[23] O. Friman , I. Volosyak , A. Gräser , Multiple channel detection of steady-state vi-
sual evoked potentials for brain–computer interfaces, IEEE Trans. Biomed. Eng.

54 (4) (2007) 742–750 . 
[24] I. Volosyak , SSVEP-based Bremen-BCI interface – boosting information transfer

rates, J. Neural Eng. 8 (3) (2011) 036020 . 

[25] C. Kick , I. Volosyak , Evaluation of different spelling layouts for SSVEP based
BCIs, in: Proceedings of the Thirty-sixth IEEE Annual International Confer-

ence of Engineering in Medicine and Biology Society (EMBC), IEEE, 2014,
pp. 1634–1637 . 

[26] F. Gembler , P. Stawicki , I. Volosyak , Towards a user-friendly BCI for elderly peo-
ple, Proceedings of the Sixth International Brain–Computer Interface Confer-

ence, Graz, 2014 . 

[27] F. Gembler , P. Stawicki , I. Volosyak , Autonomous parameter adjustment for
SSVEP-based BCIs with a novel BCI wizard, Front. Neurosci. 9 (474) (2015) . 

[28] M. Spüler , W. Rosenstiel , M. Bogdan , Online adaptation of a c-VEP brain–com-
puter interface (BCI) based on error-related potentials and unsupervised learn-

ing, PLoS ONE 7 (12) (2012) e51077 . 
[29] J. Thielen , P. van den Broek , J. Farquhar , P. Desain , Broad-band visually evoked

potentials: re (con) volution in brain–computer interfacing, PloS One 10 (7)

(2015) e0133797 . 
[30] P.F. Diez , V.A. Mut , E.M. Avila Perona , E. Laciar Leber , Asynchronous BCI control

using high-frequency SSVEP, J. NeuroEng. Rehabil. 8 (1) (2011) 1–9 . 
[31] D.-O. Won , H.-J. Hwang , S. Dähne , K.-R. Müller , S.-W. Lee , Effect of higher fre-

quency on the classification of steady-state visual evoked potentials, J. Neural
Eng. 13 (1) (2015) 016014 . 

[32] P. McCullagh , G. Lightbody , J. Zygierewicz , W.G. Kernohan , Ethical challenges

associated with the development and deployment of brain computer interface
technology, Neuroethics 7 (2) (2014) 109–122 . 
Ivan Volosyak received the Diploma in the field of au-

tomation and control of technical systems from the Dne-
propetrovsk State University, Dnepropetrovsk, Ukraine, in

1998, and the Ph.D. degree in electrical engineering from

the University of Bremen, Bremen, Germany, in 2005. He
is currently a Professor for Biomedical Engineering at the

Rhine-Waal University of Applied Sciences, Kleve, Ger-
many. Previously, he was a Postdoctoral Research Fellow

at the Institute of Automation, University of Bremen, and
Project Manager of several national and the European

Union projects carried out at the University of Bremen,

Germany. From 2005 to 2008, he has held visiting posi-
tions at the Institute for Knowledge Discovery, Graz Uni-

ersity of Technology, Austria, and at the Centre for Rehabilitation Engineering,
lasgow University, U.K. His research interests include Brain-Computer Interfacing,

ignal processing, digital image processing, service robotics, and assistive technol-
gy with the primary focus on applications in spinal cord injury rehabilitation. 

Felix Gembler received the M.Sc degree in mathematics

from University of Duisburg-Essen in Duisburg, Germany,
in 2013. He is currently working as research assistant at

the faculty of technology and bionics at the Rhine Waal
University of Applied Sciences, Kleve, Germany. His re-

search interests include Brain-Computer Interfaces, digital
signal processing and data fusion. 

Piotr Stawicki received his Diploma (M.Sc.Eng.) in Tech-
nical Physics with the focus on Biomedical Engineering

from the Wroclaw University of Technology, Poland, in
2009. He is currently working as research assistant at the

faculty of technology and bionics at the Rhine Waal Uni-
versity of Applied Sciences, Kleve, Germany. His current

research interests include Brain-Computer Interface, Man–

machine interaction, and service robotics. 


