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Abstract 

Motor imagery can be defined in terms of imagined movement from the first person perspective. It has been getting 
many researchers’ attention since it could be implemented in many important applications such as neurological 
rehabilitation, sports training, prosthesis movement control, and so on. This research evaluates OpenBCI for Motor 
Imagery application, especially whether the OpenBCI Spiderclaw V1 headwear electrodes placements are sufficient 
for motor imagery application. OpenBCI 32 bit board with daisy chain (16 channels) was used in this research. 
OpenVibe’s motor imagery CSP scenarios were adopted. After subjects had finished working with the OpenVibe 
motor imagery scenarios, they were asked to fill Movement Imagery Questionnaire-3 (MIQ-3). MIQ-3 results were 
used to validate whether subject suffer from “BCI illiteracy”. It could be concluded that the OpenBCI Spiderclaw V1 
electrodes placements are not optimum for motor imagery application. The average of accuracy measurements which 
was around 60% for all subjects shows poor motor imagery performance. Furthermore, 16 channel electrodes 
configuration with a wide temporal filter range [8-30 Hz] showed better performance compared to other settings in 
this research. However, further study is needed to improve the statistical significance of these findings. On the MIQ-3 
results, kinesthetic imagery score reflects the most correlated with the accuracy measurement, supporting the 
suggestion that questionnaire could be used to predict user’s motor imagery performance.   
 
© 2015 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the scientific committee of 
The Third Information Systems International Conference (ISICO 2015) 
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1. Introduction 

1.1. Motor Imagery and OpenBCI 

Motor imagery means simulating an action/movements in individual’s mind. It can be defined in terms 
of imagined movement from the first person perspective [18][9]. Motor imagery has been getting many 
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researchers’ attention since it could be implemented in many important applications such as neurological 
rehabilitation, sports training, prosthesis movement control, and so on.  

Motor imagery research and applications have been developed using various electroencephalogram 
(EEG) devices: expensive medical EEG device, Commercial off-the-shelf EEG devices such as Emotiv or 
NeuroSky, and so on. However, recently many researchers have been giving attention to the OpenBCI, the 
open-source brain-computer interface (BCI) device (not to be confused with OpenBCI software - 
http://openbci.pl). OpenBCI has its roots as a crowdfunding project. The OpenBCI Board is a versatile 
and affordable bio-sensing microcontroller that can be used to sample electrical brain activity (EEG), 
muscle activity (EMG), heart rate (EKG), and more. It is compatible with almost any type of electrode 
and is supported by an ever-growing, open-source framework for signal processing applications 
(http://openbci.com) [23]. This device open opportunities for researchers to develop innovative BCI 
research and applications because of its open source nature, which means its software and hardware might 
be modified and developed as needed.  

So far, only limited OpenBCI research reports have been published. For instances, Azokar [3] used 
OpenBCI to control a Quadrotor. Bondre and Kapgate [4] develop a framework for Steady State Visually 
Evoked Potentials (SSVEP) in Brain Computer Interface (BCI). Firtina et al. [6] develop Emotion Engine 
using OpenBCI, which acts as a hub between the computer and the user. It takes the user's physiological 
data through body sensors and continuously estimate the user's emotional state based on previously 
collected data from the user. The contribution of this research is that it might be one among the first which 
evaluating OpenBCI for Motor Imagery application. 

1.2. OpenVibe and OpenBCI Spiderclaw V1 Headwear 

OpenVibe (http://openvibe.inria.fr) is a novel open-source software platform to design, test and use 
brain-computer interfaces in real and virtual environments [17][15]. OpenVibe is meant to be a set of 
software modules for the acquisition, pre-processing, processing and visualization of cerebral data, as well 
as for the interaction with virtual reality displays [16]. OpenVibe has been implemented in many Brain-
Computer Interface research, such as P-300 [5][11][12][10], as well as motor imagery [1]. This research 
adopted the OpenVibe’s motor imagery scenarios. 

Many researchers suggested the optimum electrodes placements for motor imagery application are 
around the C3 and C4 locations [14]. However, this research questioned the accuracy of motor imagery 
when the electrodes placements utilize the OpenBCI Spiderclaw V1 Headwear’s scheme. According to 
the 10-20 systems, they were located at Fp1, Fp2, C3, C4, T5, T6, O1, O2, F7, F8, F3, F4, T3, T4, P3, and 
P4. Therefore, another contribution of this research is that a conclusion whether the Spiderclaw V1 
electrodes placements sufficient for motor imagery application would be drawn.  

2. Methods  

2.1. OpenBCI 

The first step of this research was to construct OpenBCI EEG device and its headwear. The Spiderclaw 
v1 headwear design (available on OpenBCI website) was 3d printed (Figure 1.a). However, the size of its 
design seemed to be too large for most of the users in this research (Figure 1.b and Figure 1.c).  Therefore, 
it was decided that in this experiment, the EEG electrodes were placed manually on users’ head, based on 
10-20 systems (see Figure 2.a and Figure 2.b). OpenBCI 32 bit board with daisy chain (16 channels) was 
used in this research. OpenBCI GUI software was used to check whether the electrode placement had 
been working correctly (Figure 2.c). 
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2.2. OpenVibe Motor Imagery 

This research adopted OpenVibe’s motor imagery CSP scenarios. It consists of several steps: signal 
monitoring, acquisition, CSP training, classifier training, online testing, and replay (see Figure 3). 

According to [24], the signal monitoring scenario (Figure 3.a) was used to check the quality of the 
signals before starting an experiment. One should check the quality of the signals and ensure that: eye 
blinks are visible; jaw clenching is visible; alpha waves are visible when closing eyes. Temporal filter 
(Butterworth band pass) was used.  

The acquisition scenario (Figure 3.b) was used as a first step to collect some training data. Those data 
will later be used to train a classifier for online testing. After 40 seconds running this scenario, it starts the 
instruction sequence. Left/right arrows will be presented to let users imagine left/right-hand movements. 
There will be 20 arrows of each side (see Figure 4.a). The stimulator configuration was written in Lua 
script (www.lua.org).  

The CSP training scenario (Figure 3.c) trains the Common Spatial Pattern spatial filter that will be 
used in the further steps. Then the Stimulation based epoching boxes provide examples for the CSP 
Spatial Filter Trainer: class 1 for LEFT trials; class 2 for RIGHT trials. Spatial filter coefficients 
computed according to the Common Spatial Pattern algorithm. The CSP algorithm increases the signal 
variance for one condition while minimizing the variance for the other condition. The goal of the 
algorithm is to improve the discrimination of two types of signals. The spatial filters are constructed in a 
way they maximize the variance for signals of the first condition while at the same time they minimize it  

Figure 1. (a) OpenBCI electrodes placed on user's scalp. (b) Direct placement without headwear. (c) OpenBCI GUI software 

Figure 2. (a) 3d printed OpenBCI headwear. (b) Prototype used by respondent (c) The size is too large for some users 
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for the second condition. This can be used for discriminating the signals of two commonly used motor 
imagery tasks (e.g. left versus right-hand movement). 

In the classifier trainer scenario (Figure 3.d), the CSP spatial filter configuration produced in the 
previous scenario is used prior to the feature extraction, followed by the feature extraction part. Then 
stimulation based epoching is used to select four seconds of signal half a second after the instruction was 
shown to the user. The signal is then splitted in blocks of 1 second every 16th second and the logarithmic 

Figure 3. Motor imagery scenario in OpenVibe 

Figure 4. (a) Motor Imagery Instruction. (b) Classification result shown to user during testing 
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band power is computed. The matrices can then be converted into feature vectors. This scenario produces 
a classifier configuration file at the end of the experiment that will be used during online sessions. 

Finally, the online testing scenario can be seen at Figure 3.e. This scenario can be used online once the 
CSP spatial filter and the classifier are trained. The CSP spatial filter produced in the earlier scenario is 
used prior to the feature extraction, followed by the feature extraction part similar with at the previous 
scenario. The spatial filter maps M inputs to N outputs by multiplying each input vector with a matrix.  
Finally, the feature vectors are classified with an LDA classifier. Note that the state vector of the classifier 
(which in the case of the LDA is the distance to the separation plane) is sent to the Graz Visualization box 
for feedback (see Figure 4). In order to display correct feedback, the Graz Visualization box expects a 
negative value for one class and a positive value for the other class. 

2.3. Data collection 

This research involved 10 participants, all healthy male between 22 to 30 years old. OpenVibe’s motor 
imagery scenario with CSP algorithm was modified. EEG recording was done in two phases. The first 
stage was conducted using eight-channel configurations, which electrodes were placed at Fp1, Fp2, C3, 
C4, T5, T6, O1 and O2 according to the 10-20 systems. Next, additional eight more channels (16 channel 
in total) placed at F7, F8, F3, F4, T3, T4, P3, and P4 were added. The recorded EEG data would be 
studied under two temporal filters setting. First, configuration with low cut frequency at 1 Hz and high cut 
frequency at 30 Hz. Second, filter in a smaller frequency band [8-12 Hz]. Therefore, for each participant, 
eight motor imagery accuracy measurements would be collected. The accuracy is computed given the 
results from classifiers, compared to the targets received. As a result, 80 accuracy measurements would be 
gathered from all participants in total. 

After the participant had finished working with the OpenVibe motor imagery scenarios, they were 
asked to fill a questionnaire. The questionnaire used in this research was the Movement Imagery 
Questionnaire-3 (MIQ-3), which is the most recent version of the Movement Imagery Questionnaire [8].  

2.4. Precautions towards BCI Illiteracy using Movement Imagery Questionnaire-3 (MIQ-3) 

Since the cognitive function of each might slightly differ during practicing motor imagery, 
measurement of motor imagery ability is an important issue. According to the recent literature review 
conducted by Laura et al. [13], explicit motor imagery ability can be measured by questionnaire and 
mental chronometry. Moreover, implicit motor imagery ability can be measured through prospective 
action judgment and motorically driven perceptual decision paradigms. 

The Movement Imagery Questionnaire-3 (MIQ-3) is the most recent version of the Movement Imagery 
Questionnaire [8] and the Movement Imagery Questionnaire-Revised [7]. It is a 12-item questionnaire to 
assess individual's ability to image four movements using internal visual imagery, external visual 
imagery, and kinesthetic imagery [22]. MIQ-3 requires the respondent to image four movements; a knee 
lift, jump, arm movement, and waist bend. Participants are asked to perform physically, and afterwards  
image the movement. Each movement is imaged three times, once from an external visual perspective, 
once from an internal visual perspective, and once kinesthetically, resulting in a total of 12 movements 
physically performed and then imaged. Following each image, participants rate the ease they can produce 
the image on a 7-point Likert-type scale. It is ranging from 1 (very hard to see/feel) to 7 (very easy to 
see/feel). A higher score, therefore, represents a higher ability to perform visual or kinesthetic imagery 
[21]. Williams et al. [22] identified the MIQ-3 to be a valid and reliable questionnaire. 

The phenomenon of “BCI illiteracy” means that not everybody could use BCI application effectively, 
about 20% of subjects are not proficient with a typical BCI system [2]. In this research, MIQ-3 results 
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were used to validate whether a subject suffers from “BCI illiteracy”. Any subject with this phenomenon 
would be excluded from further data analysis. 

3. Results and Discussion 

The MIQ-3 results from all participants are presented in Table 1. As suggested by previous research 
[19][20], motor imagery questionnaire could be used as a method to detect BCI illiteracy.  From the Table 
1, it could be seen that all participants were able to do the imagery task quite well. In average, most 
subjects report that “somewhat it was easy to see or to feel” when completing the task given in the 
questionnaires. Because of “BCI illiteracy” phenomenon did not emerge in this research. Therefore, the 
motor imagery accuracy data from all respondents would be used for further data analysis.  

Table 2 shows the accuracy measurements from motor imagery application when the user run the 
experiment. The number shown in bold and highlighted means the peak of user’s performance, compared 
to the user’s performance in other configurations. After repeating the experiment, almost all subjects’ 
accuracy were increasing and reaching top performance under 16 channel electrodes configuration with a 
wide temporal filter range [8-30 Hz]. However, based on the ANOVA analysis that resulted in F= 0.21 
lower than F crit= 2.72 means that the null hypothesis was accepted. It might need larger data size, to be 
able to conclude the statistical significance of this finding.  

Furthermore, to compare the accuracy of 8 channels with 16 channel configuration and 8-30Hz with 8-
12Hz temporal filter setting, F-Test and t-Test were conducted. Both F-Test concluded that the variances 
of the two populations are equal (accept the null hypothesis). Similarly, the t-Test result suggested not 
rejecting the null hypothesis. The observed differences between the sample means were not convincing 
enough to say that the average number of study hours between 8-30Hz and 8-12Hz, 8 channels and 16 
channel as well, differ significantly. 

The average of accuracy measurements was around 60% for all subjects. It shows that the motor 
imagery performances using OpenBCI Spiderclaw v1 configurations were still inferior to experiments 
with electrodes positioned around C3 and C4 for optimum setting [14]. This finding suggests that those 
who want to develop motor imagery application should place electrodes around  C3 and C4, instead of 
insist on the Spiderclaw v1 design.  

 

Table 1. MIQ-3 results 

Subject Internal Visual Imagery External Visual Imagery Kinesthetic Imagery average 

subj1 6 6 3.75 5.25 

subj2 6.25 5.75 5.75 5.92 

subj3 6.25 4.5 5.75 5.50 

subj4 6.5 5.75 6.5 6.25 

subj5 6.75 6.5 5 6.08 

subj6 6.25 7 4.75 6.00 

subj7 4.5 6 3.75 4.75 

subj8 5.75 7 6 6.25 

subj9 6.75 6 3.75 5.50 

subj10 5.75 5.25 4.5 5.17 
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Table 2. Users' accuracy when running the Motor Imagery scenario 

Subject 

Motor Imagery CSP Scenario's Accuracy 

8-30 Hz filter 8-12 Hz filter 

8 channel 16 channel 8 channel 16 channel 

1st trial 2nd trial 1st trial 2nd trial 1st trial 2nd trial 1st trial 2nd trial 

subj1 50.78% 64.56% 47.15% 69.75% 60.23% 63.53% 46.02% 63.53% 

subj2 52.78% 66.27% 54.46% 70.29% 49.90% 60.93% 49.59% 60.93% 

subj3 52.38% 70.65% 55.43% 71.26% 49.65% 70.35% 51.01% 70.35% 

subj4 65.34% 67.71% 52.81% 68.56% 58.32% 66.62% 57.54% 66.62% 

subj5 49.65% 65.45% 47.78% 62.36% 44.26% 62.14% 54.11% 62.14% 

subj6 53.08% 63.67% 45.33% 73.86% 44.76% 63.47% 52.23% 63.47% 

subj7 71.64% 66.52% 49.23% 73.19% 65.46% 64.78% 63.90% 64.78% 

subj8 50.30% 82.85% 59.81% 82.83% 56.05% 74.32% 69.83% 74.32% 

subj9 46.97% 62.10% 43.91% 66.12% 49.90% 60.38% 44.62% 60.38% 

subj10 48.91% 65.74% 51.28% 68.50% 45.28% 64.55% 54.60% 64.55% 

 

Table 3. Correlation between MI-CSP accuracy and MIQ-3 

 MI-CSP accuracy Internal Visual Kinesthetic External Visual MIQ-3 average 

MI-CSP accuracy 1 
    

Internal Visual -0.595360519 1 
   

Kinesthetic 0.434405169 0.317475218 1 
  

External Visual 0.114363829 0.004181174 -0.08261231 1 
 

MIQ-3 average 0.090546213 0.641609096 0.761381681 0.441080048 1 

 
 
As can be seen in Table 3, considering the correlation between the performance of motor imagery 

experiment and the MIQ-3 result, kinesthetic imagery score reflects the most correlated with the accuracy 
measurement. However, the external visual imagery was removed from regression analysis because of its 
P-values below 0.05. The R Square values from regression analysis show good value, as much as 0.79. It 
means that 79% of the variation in MI-CSP accuracy was explained by the independent variables Internal 
Visual Imagery and Kinesthetic Imagery. This finding supports the Vuckovic’s [20] suggestion that 
questionnaire could be used to predict user’s performance while running BCI applications, especially 
motor imagery applications. 

4. Conclusion 

It could be concluded that the OpenBCI Spiderclaw V1 electrodes placements is not optimum for 
motor imagery application. It was located at Fp1, Fp2, C3, C4, T5, T6, O1, O2, F7, F8, F3, F4, T3, T4, 
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P3, and P4. The average of accuracy measurements which was around 60% for all subjects shows poor 
motor imagery performance. Electrodes might be better concentrated at around C3 and C4 for motor 
imagery application, imagining right hand and left-hand movement. Additionally, 16 channel electrodes 
configuration with a wide temporal filter range [8-30 Hz] showed better performance compared to other 
settings in this research. However, further study is needed to improve the statistical significance of these 
findings. Utilizing MIQ-3 self-report questionnaire, “BCI illiteracy” phenomenon were not observed from 
experiment subjects. Interestingly, kinesthetic imagery score reflects the most correlated with the 
accuracy measurement, supporting the suggestion that questionnaire could be used to predict user’s motor 
imagery performance.  
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